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We prove that the spectrum of the generalized quasienergy operator of a plane-
polarized two-level atom in a strong external quasiperiodic electromagnetic field
with nonzero constant Fourier component is pure point, under Diophantine
conditions on the frequency ratio, and excluding a small subset of resonant
values. The widespread belief that there may be only pure point spectrum in
such models is briefly discussed in Section 2 and the circularly polarized case—
a well-known soluble model—is revisited from the point of view of the
quasienergy operator..
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1. THE PLANE POLARIZED CASE

Quantum stability has been the subject of intensive research since the basic
papers of Bellissard1" and Cornbescure.<2) More recently, interest arose in
quantum systems under quasiperiodic perturbations13"7' in the context of
"quantum chaos," because quantum localization effects seem to be less
pronounced in such systems, in comparison with their periodic counter-
parts: see the review/81 which is a stimulating introduction to the subject.

We consider models of two-level atoms, interacting with a sinusoidal
external bichromatic electromagnetic field in the dipole approximation.(9)

For plane-polarized external fields, the Hamiltonian is



Above, ax,ay, az are the Pauli matrices, (2/?) denotes the energy dif-
ference between the (two) atomic levels, &>i and a>2 are the field frequencies
(in general, incommensurate), and A I , / ^ are real coupling constants
(without loss positive). The function/^, t, u>2t) = 1] cos(a>j t) + A2 cos(o>2/)
is the simplest example of a quasiperiodic function/10' It is thus convenient
to generalize (1) to
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We assume that/is a quasi periodic function, with/(#i,#2) analytic in a
strip

The corresponding generalized quasienergy operator'3' is

on the (extended) Hilbert space

where T2 denotes the (two-dimensional) torus and d/.i = l/(2n)2 dd^, d82 is
the corresponding ergodic measure.

This case covers all the physical applications so far.
For small coupling (A small in (2)) it was proved in ref. 4 that t

spectrum of the quasienergy operator corresponding to (2) is pure point,
when A is excluded from a "small" set of resonant values (see ref. 4 for th
precise statement) The method of proof was an operator KAM perturba-
tion technique developed by Bellissard(1) and Combescure/2'

The other domain of coupling constants which seems to be amenable
to KAM-type perturbation is that of large coupling. Our presentation of
the results in this section differs from that in ref. 4, and follows in part the
beautiful paper of Howland.(11)

The quasienergy operator corresponding to (2) in the case of large
coupling (i.e. /? = s "small" and 1 = fixed = 1) is the operator on 3? defind
by



It is convenient to consider the limiting case ("infinite coupling")

In this case the Schrodinger equation is

with solution

Alternatively, from the point of view of the generalized quasi-energy
operator K{, we have, after a rotation,
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We have the following theorem of Bohr:(12)

Proposition 1. ^, given by (6), is quasiperiodic iff

where

then

where cp is quasiperiodic
Writing



the generalized Floquet operator (refs. 3 and 4) has pure point spectrum.
(The single condition £neZ2 |/n/" • f> < oo in ref. 4 is somewhat misleading
because it implies /0 = 0, which is not necessary, because it is not the
integral of / which must be quasiperiodic, but the exponential of the
integral, see Proposition 1).

From the point of view of the generalized quasi energy operator this
example was discussed by Howland'1" in a slightly different context:

Proposition 2.(11). Assume that

Hence

A simple generalization of this argument (performing a unitary gauge
transformation) is applicable to (4) (see also ref. 13, where this generalization
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on C(x)L2(T2). It was proved in ref. 4 that if IOK, +«2 | >y/|n, \" for y>Q,
ff> 1 V«eZ2(«, ^0), with a = a)1/co2 (a diophantine condition), and

Then K± in (10) are unitarily equivalent to

for almost every a. = co2/(ol. Notice that (12) is weaker than (11) .
The proof consists in introducing the function

and showing that the above series is absolutely convergent, with
veC\J2), and
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was applied to a modification of (1)). Rotating K given by (4), through njl
about the y axis, we obtain

Introducing

and

we see that

where

According to propositions 1 and 2, and (9), there are two cases:

The following theorem is a simple generalization of the argument of ref. 13:

Theorem 1. In case (a), iff is analytic in a strip (3), the spectrum
of Kl, given by (4), is pure point, if a is excluded from a "small" subset of
resonant values. (Precise conditions are given in theorem 6.1 of ref. 4 and
are the same here)

Proof. We apply theorem 6.1 of ref. 4 to K'{ given by (19). The only
difference, as in ref. 13, is that the "potential"

depends on a by (16), and it must be verified that ||K||,i0<oo, where
|| • ||r Q denotes the Combescure norm (refs. 2 and 4), r < r0, and Q = (1, oo).



is pure point for all / I l 5 /12, i.e., a nonperturbative result. Model (20) is
well-known soluble model (see ref. 14 for reviews): each term of type
{A.[cos(cot)ax + sin(a)t)ffy]} =Xe-"ata++Xeiu"a_ where < r + = ( o d ) and

e r _ = ( ° °) are the spin-flip operators, corresponds to performing the
"rotating-wave approximation" (RWA), whereby antiresonant terms are
neglected (ref. 9, p. 144). we have:

Proposition 3. The spectrum of K is pure point for all ca{, co2, A,
and /12-

Proof. We write

where

1066 Wreszinski and Casmeridis

This is an exercise in complex analysis, using the assumption of analyticity
of/and definition (16).

2. NONPERTURBATIVE RESULTS ON THE SPECTRUM:
CONCLUSION AND OPEN PROBLEMS

There is a widespread belief that there is neither a spectral transition,
or mixed spectrum in models of two-level atoms with analytic perturba-
tions, such as the one described in Section 1, i.e., the spectrum is expected
to be pure point, under diophantine conditions on the frequency ratio.

In this connection, we remark that the circularly polarized case corre-
sponding to ( 1 ) :

is such that the corresponding generalized quasienergy operator



Define, now, the maps g( 6, 0) -> (8,, Q^) by {^ ~ f ° • g maps the torus
T2 into T2, and the induced map f Wf)(6, 6) =f[g(d, 0)] maps L2(T2, dfi)
into L2(T2, dfj.) isometrically, carrying K into K, given by

More precisely, K is equivalent under W to the restriction of K to the range
of W. On Jf = C®L2(T2, dy = ( \ / ( 2 n ) 2 ) d O d 6 ) , where f2 denotes the
torus in the (6, 0) variables, K, given by (24), is the sum of two commuting
operators K{ and K2, where

Since Kl has point spectrum by ref. 15 (bounded energy), as well as ^2

by (25), £ has point spectrum, and hence the same holds for K.
The above result cannot be indicative of the general behaviour

for analytic perturbations, because, in this case, the spectrum of the
generalized quasienergy operator is pure point even for a = co2/co1 rational,
while such is not the case for plane polarization (for instance, in the special
case (5), a simple proof exists"l) that K{ is absolutely continuous, see also
ref. 1]. Hence, more general nonperturbative results are required to arrive
at a general picture. Existence of continuous spectrum for non analytic
perturbations has been proved in refs. 4 and 7.

Theorem 1 shows that, in the case of plane polarization, the only
unsolved case for large coupling is b). In this case, the unperturbed
quasienergy operator has (doubly) degenerate spectrum. This problem is of
general nature: KAM perturbation theory in the presence of (finite)
degeneracies, and merits further study.
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and K2 is the Floquet operator corresponding to the (periodic)
Hamiltonian
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